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Abstract

Most real data sets are noisy in nature.  A number of techniques for outlier detection and removal have

been proposed recently.  This paper reviews the issues on the effects of outliers in training a back-

propagation neural network.  A new technique to detect and remove the outliers using error sign testing

is proposed, and the method is applied to classify a set of wireline log data obtained from an oil well in

Australia into different rock types.  The results on this example show that the reduced training set

improves generalisation on a validation test data set.

Model Assumptions

In this paper, we will assume a multi-layer feed-forward network trained using back-propagation,

and will use the general expression "neural network" to mean such a network.  All connections are from

units in one level to units in the next level, with no lateral, backward or multi-layer connections.  Each unit

is connected to each unit in the preceding layer by a simple weighted link.  The network is trained using

a training set of input patterns with desired outputs, using the back-propagation of error measures.  The

network is tested using a validation set of patterns which are never seen by the network during training

and thus can provide a good measure of the generalisation capabilities of the network.  The separation

of the total set of patterns into training and test sets is generally at random to avoid introducing

experimenter bias.

By back-propagation we mean the general concept of developing the error gradient with respect

to the weights, and not restricted to the original gradient descent method.  In the examples we use here,

we have used the basic sigmoid logistic activation function, y = ( 1 + e - x ) - 1, though again this is not

germane to the substance of our results.
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Introduction

Neural networks are increasingly popular for solving pattern recognition, classification and

mapping problems.  One of the important features of such networks is their ability to learn and generalise

from examples.  Whilst neural network methods are capable of solving complex problems, three major

research areas have techniques which being actively developed to compensate for the deficiencies of

back-propagation networks.  These areas include the optimisation of network topology (Gedeon and

Harris, 1992; Bose and Garga, 1993), the development of fast learning algorithms (Barnard, 1992;

Scalero and Tepedelenlioglu, 1992; Zhang and Wang, 1992) and the design of the training patterns

structure (Wann et. al., 1990; Mehrotra et. al., 1991; Gedeon and Bowden, 1992; Slade and Gedeon,

1993).  This paper addresses the last research area which attempts to use appropriate training patterns

in order to reduce the amount of training time and improve generalisation ability.

Recent work has addressed the issue of using boundary samples in training the network.  Wann

et. al. (1990) used Hamming distances to define the boundary samples and also showed that using

boundary samples were sufficient to achieve good performance in generalisation.  Mehrotra et. al. (1991)

provided some guidelines on the number of boundary samples which should be used in successful

classification.  These two papers, however, did not discuss the effects of the quality of the data in training

the network.  Most real data sets are not only complex and highly non-linear, but also noisy in nature. 

Noisy data containing outliers can generally have two effects on training neural networks.  The first effect

is to slow down the learning of the good data, and the second is to overfit the outliers.

Gedeon and Bowden (1992) used a new technique in simplifying the error surface in the pattern

space by eliminating half of the given training samples.  The method was based on the errors associated

with each pattern at 1000 epochs.  The errors were sorted in ascending order and every second sample

of the sorted patterns then selected, and a half-sized training set was obtained.  The new training set was

then used for a further training stage.  The technique was demonstrated by an example study.  The

results showed that training using the reduced training set, in some cases performed better (i.e. produced

better generalisation) on the validation set compared to training on the whole training set.  Strictly

speaking, the method used in that study was not an outlier removal technique since only half of the noisy

data (as well as the good data) were eliminated from the original training data set.  

Slade and Gedeon (1993) reviewed a number of outlier detection and removal techniques,

including Absolute Criterion, Least Median Squares and Least Trimmed Squares methods.  They also

proposed a technique based on the error distribution of the training patterns at intervals of 50 epochs. 

All of these techniques were based on analysis of the error values and their distribution over the training

patterns at a specific epoch, and the reduction of patterns was then performed.

A new outlier detection and removal technique based on the change of error during training, will

be described in the next section.  Unlike Gedeon and Bowden (1992) and Slade and Gedeon (1993), the
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proposed technique examines the "quality" of each pattern in the training set within a certain number of

epochs before outliers start to affect the performance of the learning process.  An example study using

wireline logs and core data from an oil well in a real reservoir will be used to demonstrate the proposed

method.  

Error Sign Testing

During the training phase each input vector of the training set is presented to the network and

an output vector is obtained.  An error vector is then calculated by taking the difference between the

desired and the output vectors.  The magnitude of the error vector can be used as a measure of how

easily the input pattern is learnt in a given epoch, the lower the value the easier to learn.  For successful

learning of a good pattern, the error magnitude for a particular pattern in the nth epoch of batch training,

say En, should be smaller than the previous one, En-1.  Therefore, counting the number of negative signs

of the expression En-En-1 for K epochs can be used to define a good pattern.  In order words, a pattern

with a large percentage of negative signs will be a good pattern.  Similarly, a small percentage of

negative error signs (or large percentage of positive error signs) will be a noisy pattern or outlier.  This

method of detecting outliers is the Error Sign Testing (EST) method.

The value of K can be determined by the root-mean-square-error (rmse) of all the training

patterns presented to the network.  In most applications, the rmse starts from a high value and drops very

quickly in a small number of epochs.  In this example study, K was determined at an epoch when

oscillation of rmse began, say 200.  This is due to the presence of the outliers, and hence the learning

of good patterns slows down and the network starts to overfit the outliers.

After K epochs, the percentage of negative signs of each pattern is calculated.  In this study, a

pattern which has less than 10% of the negative error signs is defined as an outlier.  The outliers are then

removed and further training is performed using a reduced pattern size.  A validation data set is also used

to test the performance of the trained network, but is not used for training, nor are any outliers removed

from this test set.
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Example Study

The technique we proposed for pattern reduction was used on a data set from the wireline logs

and core data in an oil well located at the North West Shelf, Australia.  The data set consisted of 231

points along the well with 4 wireline log measurements.  The log variables in this well included deep

resistivity (RLLD), bulk density (RHOB), sonic travel time (DT) and gamma ray (GR).  The rock type of

each of the points was identified through the careful examination of the core sample taken at that

location.  In this study, five dominant rock types were found and were then named as rock types 1 to 5

f o r

s i m p l

icityFigure 1. Relationships of RHOB and DT for different rock types

purposes.  All the log measurements were normalised in the range of 0 to 1.  A cross-plot of RHOB

versus DT is shown in Figure 1.  The core sampling process is not usually done on every well and the

predictions of rock types must then rely on the available log data.  Neural network methods are

increasingly popular in this area, and some recent applications in well log analysis can be referred to

Rogers et. al. (1992) and Wong et. al. (1994).

In this study, the four log measurements and the corresponding rock types were used as the

input patterns and the desired output patterns respectively.  The validation data set was constructed

using every third point along the well and hence the size of this data set was 77 patterns (i.e. one-third

of the original).  The initial training set was then formed by the remaining 154 patterns.

The network architecture used has four input units corresponding to each of the log variables,

and four units in the hidden layer.  Each rock type was represented by one output unit, and hence five
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output units were used.  The classification was considered to be correct if the outputs of the network were

within 0.1 of the desired value of 0 or 1.  Bias nodes were also included in the hidden and output layers. 

The learning rate and the momentum were both set to 0.1.  The network configuration used produced

acceptable predictions of the rock type.  By acceptable, we meant the results from neural network

produced a consistent improvement compared to those obtained from the standard statistical techniques

(see later sections).

Experiments and Results

The log measurements usually contain noisy data, especially in a lithologically complex reservoir. 

 However, the outliers are not easily recognised in most of the cases (refer to Figure 1).  Note that this

does not include potentially unbounded outliers, which are clearly markedly different to the normal data

and are excluded using standard methods.  This exclusion of markedly different outliers is necessary for

our method, as it is specialised to the location of any remaining outliers, and the sum of squares error

term is not sufficiently sensitive to compensate for very extreme values which could pull the network

towards them and still reduce the overall squared error.   In this study, the proposed error sign testing

method was used to detect and remove any remaining outliers.  Four experiments with different training

sets were trained and the performance of each set (i.e. classification accuracy) was evaluated using the

validation test data.  The structure of each training set is described as follow: 

  (1) whole data set - this data set consisted of the original 154 data which was used as a control

experiment.

  (2) half of the whole data set - this data set was selected based on the percentage of negative error

signs during training using each of the 154 original patterns.  The patterns were then sorted in

ascending order and the new training set was formed using every second sorted pattern.  The

aim of this training set was to remove half of the good and noisy data.

  (3) clean data set - the outliers, defined by the EST method, were removed from the original data

set.  After doing this, the data set was then considered to be "clean".

  (4) half of clean data set using error sign testing method - this data set was formed using the clean

data set in (3) followed by the half reduction method using the EST method as in (2).  This

experiment was designed to further simplify the set of patterns in (3). 

Each of the above experiments was performed with 10 different sets of initial weights, and was

trained for 10,000 epochs.  In each run, the same initial weights are used for training the original data set

(1), and the corresponding sets of reduced patterns (2), (3) and (4).  This was done in order to minimise

the effects of the initial random functionality of the network unit weights.  The validation set was also used

to record the highest clasification accuracy (in percentage) during the training phase.

The results of the comparison study are tabulated in Table 1.  Note that the classification
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accuracy shown are the maximum values of the number of runs done and can be from different runs. 

The average training times (measured in number of epochs) required to achieve the maximum accuracy

in each experiment are also shown.  The success of the method is shown by the high classification

accuracy on the validation set.  Statistical evaluation of the same data using discriminant analysis was

also done on the whole training set.  The classification accuracy was only 57% on the validation data. 

Therefore, the results using neural network methods showed better performance in generalisation.

Training Set Average Training Time

(epochs)

Classification Accuracy

(%)
(1) Whole Data Set 3500 66
(2) Half of Whole Data Set 3400 64
(3) Clean Data Set 2900 66
(4) Half of Clean Data Set 1400 68

Table 1: Performance of Different Training Sets on the Validation Data.

The results on this example also showed that a larger set of training patterns did not necessarily

improve the generalisation ability of the trained network.  Pattern reduction techniques aim to simplify the

error surface of the pattern space, however simple elimination of half of original training patterns did not

show significant improvement.  This is most likely due to the presence of half of the original outliers in

the remaining training data set, and these outliers may affect the process of error surface simplification. 

When the outliers were defined and removed from the training set, the same classification accuracy was

obtained compared to the whole data set.  Hence, the removal of outliers did not seem to improve

generalisation, however the clean data set took less training time to achieve the same results as obtained

from the original data set.  Therefore removing outliers in the training set does reduce the amount of

training time.  

The clean data set was also reduced to half its size and the results showed better performance

in generalisation.  This improvement was probably due to the simplification of the error surface in the

pattern space.  Figure 2 shows the outliers identified by the EST method in the run with maximum

classification accuracy.  In this case, 12 outliers (out of 154 data) were found in rock types "2" and "3",

and they were coded as "2x" and "3x".  As displayed in Figure 2, the outliers defined tend to lie within the

clusters of other rock types, and therefore including these data in the training set will significantly

increase the training time, and overfitting of these outliers will also occur.
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Figure 1. Outliers (coded as "2x" and "3x") identified by the Error Sign Testing Method

Finally, it is important to mention that the neural network method in this study performed better

than the standard statistical approach.  However, the classification accuracy obtained from discriminant

analysis can be used to provide a minimum baseline level of accuracy for the neural network method to

achieve. 

Conclusions

A new technique, called the error sign testing method, can be used to detect and remove outliers

in a noisy training data set.  The method was applied to a real data set obtained from an oil well.  From

a series of experiments, the following conclusions can be drawn:

(1) Removal of outliers in the training set does not necessarily improve performance in

generalisation over a noisy validation set.  Performance is of course much better on a clean

validation set.

(2) Pattern reduction of a clean or noise-free training set may improve generalisation, due to the

simplification of error surface in the pattern space. 

(3) Pattern reduction also has an advantage in speeding up the training time, as the number of

epochs decreases, as well as the time gained by reducing the number of patterns in the training

set, and hence the length of each epoch.
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